
Summary

The acoustic properties of fractured hydrocarbon reservoirs vary with formation depth and

pore pressure, with seismic velocity and attenuation being function of the effective

pressure, the difference between confining and pore pressure. This work analyzes

variations in velocity and attenuation in a Biot medium containing a dense set of aligned

fractures due to changes in pore pressures. Fractures are modeled as boundary

conditions imposing discontinuity of pore pressures and solid and fluid displacements

along fractures. Using numerical experiments and for wavelengths much larger than the

average fracture distance and aperture, it is possibly to determine a viscoelastic

transversely isotropic (VTI) medium long-wave equivalent to the original fractured Biot

medium. It is shown that velocity and attenuation of the equivalent VTI medium are

noticeable sensitive to variations in pore pressure.

A fractured Biot medium

We consider a fractured Biot medium and assume that the whole aggregate is

isotropic. Let the super index 𝜃 = 𝑏, 𝑓, indicate solid matrix and saturant fluid

properties associated with the background and fractures, respectively.

Let 𝐮𝑠 = 𝑢𝑠,𝑖 and  𝐮𝑓 =  𝑢𝑓,𝑖 , 𝑖 = 1,∙∙∙, 3, denote the averaged displacement

vectors of the solid and fluid phases, respectively. Also let

𝐮𝑓 = 𝜙 𝜃  𝐮𝑓 − 𝐮𝑠 , 𝜉 = −𝛻 ∙ 𝐮𝑓.

Set 𝐮 = 𝐮𝑠, 𝐮𝑓 and let 𝐞 𝐮𝑠 = 𝑒𝑠𝑡 𝐮𝑠 be the strain tensor of the solid. Also, let

𝝈 𝐮 and 𝑝𝑓 𝐮 denote the stress tensor of the bulk material and the fluid

pressure, respectively.

The linear stress-strain relations in a fractured Biot medium are (Biot, 1962):

𝜎𝑠𝑡 𝐮 = 2𝐺 𝜃 𝑒𝑠𝑡 𝐮𝑠 + 𝛿𝑠𝑡 𝜆𝑈
𝜃

𝛻 ∙ 𝐮𝑠 − 𝛼 𝜃 𝑀 𝜃 𝜉 ,

𝑝𝑓 𝐮 = −𝛼 𝜃 𝑀 𝜃 𝛻 ∙ 𝐮𝑠 + 𝑀 𝜃 𝜉, 𝜃 = 𝑏, 𝑓.

Here 𝐺 𝜃 and 𝜆𝑈
𝜃

= 𝐾𝑈
𝜃

−
2

3
𝐺 𝜃 and 𝛼 𝜃 are the Lamé coefficients (𝐾𝑈

𝜃
is the

closed bulk modulus) and 𝛼 𝜃 is the effective stress coefficient.
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The boundary conditions at a fracture inside a Biot medium

Consider a rectangular domain Ω = 0, 𝐿1 × 0, 𝐿3 with boundary Γ in the

𝑥1, 𝑥3 - plane, with 𝑥1 and 𝑥3 being the horizontal and vertical coordinates,

respectively.

Let us assume that the domain Ω contains a set of 𝐽 𝑓 horizontal fractures Γ 𝑓,𝑙 , 𝑙 = 1,∙∙∙

, 𝐽 𝑓 each one of length 𝐿1 and aperture ℎ 𝑓 . This set of fractures divides Ω in a collection

of non-overlapping rectangles 𝑅 𝑙 , 𝑙 = 1,∙∙∙, 𝐽𝑓 + 1, so that

Ω =∪𝑙=1
𝐽 𝑓 +1

𝑅 𝑙 .

Consider a fracture Γ 𝑓,𝑙 and the two rectangles 𝑅 𝑙 and 𝑅 𝑙+1 having as a

common side Γ 𝑓,𝑙 . Let 𝜈𝑙,𝑙+1 and 𝜒𝑙,𝑙+1 be the unit outer normal and a unit

tangent (oriented counterclockwise) on Γ 𝑓,𝑙 from 𝑅 𝑙 to 𝑅 𝑙+1 , such that

𝜈𝑙,𝑙+1, 𝜒𝑙,𝑙+1 is an orthonormal system on Γ 𝑓,𝑙 . Let 𝐮𝑠 , 𝐮𝑓 denote the jumps of

the solid and fluid displacement vectors at Γ 𝑓,𝑙 , i.e.

𝐮𝑠 = 𝐮𝑠
𝑙+1

− 𝐮𝑠
𝑙

|Γ 𝑓,𝑙 ,

where 𝐮𝑠
𝑙

≡ 𝐮𝑠|𝑅 𝑙 denotes the trace of 𝐮𝑠

as seen from to 𝑅 𝑙 .

The boundary conditions at Γ 𝑓,𝑙 , derived

in Nakagawa and Schoenberg (2007), are 

defined in terms of the fracture normal and

tangencial compliances 𝜂𝑁 and 𝜂𝑇, respectively. 

Besides imposing stress continuity along Γ 𝑓,𝑙 , they can be stated as follows:

𝐮𝑠 ∙ 𝛎𝑙,𝑙+1 =

𝜂𝑁 1 − 𝛼 𝑓  𝐵 𝑓 1 − Π 𝝈 𝐮 𝜈𝑙,𝑙+1 ∙ 𝝂𝑙,𝑙+1 − 𝛼 𝑓
1

2
−𝑝𝑓

𝑙+1
+ −𝑝𝑓

𝑙
Π , Γ 𝑓,𝑙 ,

𝐮𝑠 ∙ 𝝌𝑙,𝑙+1 = 𝜂𝑇𝝈 𝐮 𝜈𝑙,𝑙+1 ∙ 𝝌𝑙,𝑙+1, Γ 𝑓,𝑙 ,

𝐮𝑓 ∙ 𝝂𝑙,𝑙+1 = 𝛼 𝑓 𝜂𝑁 𝝈 𝐮 𝜈𝑙,𝑙+1 ∙ 𝝂𝑙,𝑙+1 +
1

 𝐵 𝑓

1

2
−𝑝𝑓

𝑙+1
+ −𝑝𝑓

𝑙
Π, Γ 𝑓,𝑙 ,

−𝑝𝑓
𝑙+1

− −𝑝𝑓
𝑙

=
i𝜔𝜇 𝑓 Π

 𝜅 𝑓

1

2
𝐮𝑓

𝑙+1
+ 𝐮𝑓

𝑙
∙ 𝝂𝑙,𝑙+1, Γ 𝑓,𝑙 ,

where  𝜅 𝑓 =
𝜅 𝑓

ℎ 𝑓 , ℎ 𝑓 is the fracture aperture and 𝜇 𝑓 is the fluid viscosity in the

fractures. The fracture dry plane wave modulus 𝐻𝑚
𝑓

= 𝐾𝑚
𝑓

+
4

3
𝐺 𝑓 and the dry

fracture shear modulus 𝐺 𝑓 are defined by the relations 𝜂𝑁 =
ℎ 𝑓

𝐻𝑚
𝑓 , 𝜂𝑇 =

ℎ 𝑓

𝐺 𝑓 .

Furthermore, 𝜖 =
1+i

2

𝜔𝜇 𝑓 𝛼 𝑓 𝜂𝑁

2  𝐵 𝑓  𝜅 𝑓

1/2

, Π 𝜖 =
tanh 𝜖

𝜖
,  𝐵 𝑓 =

𝛼 𝑓 𝑀 𝑓

𝐻𝑈
𝑓 .

Denoting by 𝜔 = 2𝜋𝑓 the angular frequency, Biot’s equations of motion in the

diffusive range, stated in the space-frequency domain and in the absence of

external sources are:

𝛻 ∙ 𝝈 𝐮 = 0,
i𝜔𝜇

𝜅
𝐮𝑓 + 𝛻𝑝𝑓 𝐮 = 0,

where 𝜇 is the fluid viscosity, 𝜅 is the frame permeability and i = −1 .

𝑥1

𝑥3

𝑹(𝟏)

𝑹(𝟒)

𝑹(𝟐)

𝑹(𝟑)

𝒍 = 𝟏

𝐿1

𝐿3

𝒍 = 𝟐

𝒍 = 𝟑



The equivalent TIV medium

Let us consider 𝑥1 and 𝑥3 as the horizontal and vertical coordinates, respectively.

Following Gelinsky and Shapiro (1997), and Krzikalla and Müller (2011) an

horizontally fractured Biot medium behaves as a TIV medium with a vertical

symmetry axis at long wavelengths.

Denoting by 𝜏𝑖𝑗  𝐮𝑠 and 𝜖𝑖𝑗  𝐮𝑠 the stress and strain tensor components of the

equivalent TIV medium, where  𝐮𝑠 denotes the solid displacement vector at the

macroscale, the stress-strain relations, stated in the space-frequency domain, are

(Carcione, 1992; 2015):

𝜏11  𝐮𝑠 = 𝑝11𝜖11  𝐮𝑠 + 𝑝12𝜖22  𝐮𝑠 + 𝑝13𝜖33  𝐮𝑠 ,

𝜏22  𝐮𝑠 = 𝑝12𝜖11  𝐮𝑠 + 𝑝11𝜖22  𝐮𝑠 + 𝑝13𝜖33  𝐮𝑠 ,

𝜏33  𝐮𝑠 = 𝑝13𝜖11  𝐮𝑠 + 𝑝13𝜖22  𝐮𝑠 + 𝑝33𝜖33  𝐮𝑠 ,

𝜏23  𝐮𝑠 = 2𝑝55𝜖23  𝐮𝑠 ,

𝜏13  𝐮𝑠 = 2𝑝55𝜖13  𝐮𝑠 ,

𝜏12  𝐮𝑠 = 2𝑝66𝜖12  𝐮𝑠 .

The 𝑝𝐼𝐽 are the complex and frequency-dependent Voigt stiffnesses were

determined with a generalization of the time-harmonic experiments presented in

Picotti et al. (2010) and Santos et al. (2012). Each harmonic experiment is

associated with a boundary value problem for the diffusive Biot’s equations of

motion, which solution is obtained using the FE method.

Δ𝑃
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In order to relate the pore and confining pressure to the fracture compliances

𝜂𝑁, 𝜂𝑇, following Brajanovski et al. (2005), Daley et al. (2006) and Carcione et

al. (2012), let us define the new compliances (with units of 1/Pa)

𝑍𝑁 =
𝜂𝑁

𝐿
, 𝑍𝑇 =

𝜂𝑇

𝐿
characterizing the fractures, where 𝐿 is the fracture distance. The compliances

𝑍𝑁 and 𝑍𝑇 are assumed to be dependent on the effective stress 𝜎 = 𝑝𝑐 − 𝑝,

where 𝑝𝑐 is the confining pressure and 𝑝 the pore pressure as

𝑍𝑞 = 𝑍𝑞∞ + 𝑍𝑞0 − 𝑍𝑞∞ 𝑒−𝜎/𝜏𝑞 𝑞 = 𝑁, 𝑇,

where 𝑍𝑞0, 𝑍𝑞∞ and 𝜏𝑞 are constants.



Conclusions

This work used a finite element procedure to determine the five complex and frequency-

dependent stiffnesses of the TIV medium equivalent to a horizontally highly heterogeneous

fractured Biot medium, with fractures represented as boundary conditions. The procedure

was applied to analyze the sensitivity of velocities and attenuation to variations in the pore

pressure. The numerical experiments show that attenuation and velocity anisotropy is

enhanced as pore pressure increases. Consequently, pore pressure is an important

variable in the study and characterization of fractured reservoirs.

Numerical experiments

The FE procedure was used to determine the complex stiffnesses 𝑝𝐼𝐽 𝜔 ; the associated energy

velocities and dissipation coefficients were computed as in Carcione (2015).

To analyze the pore pressure effect on velocities and attenuation, we choose a square sample of

side length 10 m, with a fracture distance 𝐿 = 1 m. The background is homogeneous and isotropic,

with grains properties 𝐾𝑠 = 37 GPa, 𝜇𝑠 = 44 GPa and 𝜌𝑠 = 2650 kg/m3 (Carcione et al., 2013). The

dry-rock bulk and shear moduli are given by the Krief model (Krief et al., 1990):

𝐾𝑚

𝐾𝑠
=

𝜇

𝜇𝑠
= 1 − 𝜙 3/ 1−𝜙 .

Porosity 𝜙 and permeability 𝜅 are 0.25 and 0.25 D in the background and 0.75 and 60.8 D in the

fractures, respectively. Porosity and permeability are related by the equation (Carcione et al., 2000):

𝜅 =
𝑟𝑔
2𝜙3

45 1−𝜙 2 , where 𝑟𝑔 = 20 𝜇m denotes the average radius of the grains. 

The saturant fluid is brine with density 1040 kg/m3, bulk modulus 2.25 GPa and viscosity 0.003 

Pa∙s. The compliances vary as in Daley et al. (2006) as 

follows:

𝐺𝑏𝑍𝑁0
= 1.5, 𝜆𝑈,𝑏 + 2𝐺𝑏 𝑍𝑇0 = 0.25.

Also, 

𝑍𝑇∞ =
𝑍𝑇0

5
, 𝑍𝑁∞

=
𝑍𝑁0

2
, 𝜏𝑇 = 5 MPa, 𝜏𝑁= 4 MPa.

Let us consider a constant confining pressure  𝑝𝑐 =30 MPa and three pore pressures 5, 15 and 28 

MPa, normal, middle and overpressure values, respectively.

Polar representation of the energy velocity vector at 60 Hz for fractures with normal pore pressure

(red line, 5 MPa), middle pressure (blue line, 15 MPa) and overpressure (green line, 28 MPa). Fractures

are represented using the boundary conditions.

Dissipation factor at 60Hz for fractures with normal pore

pressure (red line, 5 MPa), middle pressure (blue line, 15 MPa)

and overpressure (green line, 28 MPa). Fractures are

represented using the boundary conditions.

Compliances as a function of

pore pressure.

(a) qP-Waves (b) qSV-Waves
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