

Key Technologies Regarding Distributed and/or Collaborating Satellite Systems

Will Ivancic SYZYGY Engineering <u>ivancic@syzygyengineering.com</u> (440) 503-4892

- There is no free lunch.
- It is hard to develop simple, elegant solutions.
- Not much is completely new it has probably been thought of before.
 - Technology may not have been capable of implementing the original concepts
- It is always easier to do things on the ground than in space
 - Power, processing, radiation, size, mass, vacuum, heat dissipation.
- Do not believe everything you read particularly if there is a marketing aspect.

Outline

- Network Centric Design
- Policy
- Satellite Communication Basics
- Orbital Mechanics
- Satellite Architectures
- Fractionated Spacecraft
- Cooperative Spacecraft
- Protocols
 - Transport Protocols
 - Store, Carry and Forward

- Understand Policy.
- It may be the most important thing you do.
- Policy may be the hardest thing to change.
- Security has numerous Policy Issues

Policy Example

SYZYGY Engineering

SPECTRUM ALLOCATIONS IN MALAYSIA

The optimate of the party state of the second state of the second

- generation to the total of the

Country and the discount

10010-002-002

A

- All transmitters have to register.
- Receivers do not have to register.
- A satellite provider must register the transmitters and should register as to what ground stations it will be transmitting to.
- A ground station should register which satellites it will be communicating with.
 - If the ground stations are in different countries, the transmitters are registered in that country.
- For CubeSats in the amateur band
 - The cubesat can transmit anywhere so long as it is within an acceptable power level
 - The ground station uplink is performed under and amateur radio license. Each ground station that transmits is responsible for that transmission under its license.
 - See GENSO Global Educational Network for Satellite Operations

Satellite Communications

95% of what you need to understand in two slides

- The larger the apertures (area) the higher the gain
- The gain increases as the square of the frequency, v where v=1/λ
 This is why Optical is so attractive.
- Larger antenna Diameter (D) and higher frequency results in smaller angular beam widths (equation is for parabolic Antenna, but the generic concept applies)

- This is why pointing becomes an issue with Optical (lasers)

- Power falls off as the square of the distance from the source and the square of the frequency
- One way trip time to GEO (35,786 km) is approximately 120 msec with a Round Trip Time of approximately 500 msec
- One way trip time to LEO (400 km) is 1.3 msec with a RTT of approximately 5.3 msec

Electromagnetic Communications

SYZYGY Engineering

$P_r(dbm) = P_t(dbm) + Gains(dbm) - Losses(dbm)$

- Shannon–Hartley theorem: C is the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth, B, in the presence of noise, N.
 - If I have more Bandwidth, B, I can transmit more information.
- The higher the energy per bit relative to noise, Eb/No, the lower the bit-error-rate BER.
 - Reducing the transmission data rate, f_b , improves (reduces) the BER
- Gains include antenna and amplifier gains

Orbital Mechanics

The key to understanding space communication architectures

Projectile Motion – Throwing a ball

Projectile Motion – Fireworks #1

Orbital Velocity

International Space Station travels at 27,744 kilometers per hour (over 6 times faster than the fastest bullet) resulting in an orbital period of ~ 90 minutes.

Introduction to Orbits https://www.youtube.com/watch?v=lekLGgj_Wkk

Kepler's three laws

SYZYGY Engineering

- 1. The orbits are ellipses, with focal points f_1 and f_2 for the first planet and f_1 and f_3 for the second planet.
- 2. The two shaded sectors A_1 and A_2 have the same surface area and the time for planet 1 to cover segment A_1 is equal to the time to cover segment A_2 .
- 3. The total orbit times for planet 1 and planet 2 have a ratio $a_1^{3/2}$: $a_2^{3/2}$

Space is very predictable relative to orbital dynamics.

Source: http://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

Kepler's Second Law

SYZYGY Engineering

Source: Antonio González Fernández

Launch Cost to get 1 kg to GEO is 5 to 10 times the cost to get 1 kg to LEO And, at GEO, one needs More power and larger antennas to close the link (larger systems).

Basic Satellite Architectures

Often Highly Asymmetric Links

Low Earth Orbit (LEO) Only

- LEO orbit are below the Earth's *radiation belts*, which allows for use low-cost
 Commercial-Off-The-Shelf (COTS) components.
- Radiation still must be considered – depending on cost a duration of flight.

LEO via Geostationary Orbit (GEO)

LEO and GEO

Source: http://commons.wikimedia.org/ via youtube

Source: http://RKM.COM.AU Russell Knightley via youtube

Molniya Orbit

SYZYGY Engineering

Source: http://www.astronauticsnow.com/vp/

Iridium – 66 Satellites in Polar Orbit

Teledesic – 840 Satellites in original plan st

SYZYGY Engineering

complexities.

Global Positioning System

GPS Nominal Constellation 24 Satellites in 6 Orbital Planes 4 Satellites in each Plane 20,200 km Altitudes, 55 Degree Inclination

GPS is in a much higher orbit than LEO.

Tracking and Data Relay Example

DARPA F6

Future, Fast, Flexible, Fractionated Free-flying Spacecraft United by Information Exchange, or System F6 was Cancelled in 2013

subsudat campains routures roam

Fractionated Spacecraft

Fractionated Space Architectures

SYZYGY Engineering

Enables

- Resource Sharing
 - Power
 - Telecommunication
 - Processing
- Redundancy
- Rapid cluster maneuvering
- Multiple Vendors
- Multi-level Security
- Security Isolation
- Build as you go
 - Everything does not have to be ready at the same time

Infrastructure/Bus Support Function Distribution

Low

Low

High

Monolithic spacecraft equipped with F6 Tech Package

Status quo

Heterogeneous distribution and sharing of bus & payload functions

Fractionated

Cluster

Payload separation with no resource sharing or closed-loop cluster flight

Mission/Payload Function Distribution

High

Key Capabilities for 2015 On-Orbit Demonstration

Notional System F6 On-Orbit Demo

Resultant Fractionation Diagram

Source: An Exercise in Spacecraft Mission Fractionation - Kevin Rooney August 2006

Key Issues and Technologies

- Formation flying metrology and control
- Power beaming (potential to be highly efficient i.e. 95%)
- Precision navigation and time distribution
- Low-power, high capacity communications (depending on mission)
- Have at least two shared-capacity modules of each type, to accommodate robustness paradigm while avoiding multiple internal redundancies
- Launch vehicle limitations artificially increase the number of modules, with inefficient duplication of housekeeping functions
- Equalize the mass of each module: Accomplishes synergy in design with max use of common building blocks; permits maximized advantage to be taken of learning curve and launchvehicle bulk-buy economy

Space Interferometer (Conceptual – Fractionated Instrument)

- Higher angular resolution in astronomical images requires increasing apertures of telescopes or increasing baselines of interferometers.
- For monolithic units, the mass of the support structure, and propellant for launch is about to exceed technical and financial boundaries.
- Solution to overcome the mass constraint is to combine satellites in autonomous formation flight to behave just like a rigid body.
- Requires precise navigation, control and timing (to correlate data)

Cooperative Spacecraft

NASA's A-Train

Skybox

- 24-satellite constellation at a 500-kilometer orbit
- Skybox treats each satellite as just another server in a server farm.
- 4 different orbital planes
- Downlink Feed X-band, 8025-8400 MHz

 Critical to applications such as change detection
- Uplink Feed S-band, 2025-2110 MHz
- Satellite revisit rates of five to 10 times per day
- High-resolution imagery (1 meter or better) and fullmotion video for commercial sale.
 - Business case is data-mining and analytics

Frequency Bands							
Band	Use	Service	Table				
2080.89 - 2081.11 MHz	Skybox Imaging telemetry uplink	Earth Exploration- satellite (Earth- to-space)	N				
2082.89 - 2083.11 MHz	Skybox Imaging telemetry uplink	Earth Exploration- satellite (Earth- to-space)	N				
8045 - 8105 MHz	Skybox Imaging data downlink	Earth Exploration- satellite (space- to-Earth)	N				
8170 - 8230 MHz	Skybox Imaging data downlink	Earth Exploration- satellite (space- to-Earth)	N				
8295 - 8355 MHz	Skybox Imaging data downlink	Earth Exploration- satellite (space- to-Earth)	N				
8374.744 - 8375.256 MHz	Skybox Imaging telemetry downlink	Earth Exploration- satellite (space- to-Earth)	N				
8379.744 - 8380.256 MHz	Skybox Imaging telemetry downlink	Earth Exploration- satellite (space- to-Earth)	N				

Planet Lab "Dove" CubeSat

Planet Lab

- Earth-imaging satellite constellation
- 28 Doves currently
- 100 planned
- Orbit at 400 miles (640 km) and provide imagery with 3-5 m resolution
- Currently launches from the International Space Station
- Fresh data from any place on Earth
- Business Case: Global sensing and analytics

QB50 Project

Artist rendition of the QB50 CubeSats (courtesy of Ruedeger Reinhard)

Science Unit

- An international network of 50 CubeSats sequentially deployed – String of Pearls
- Multi-point in-situ long-duration measurements and in-orbit demonstrations in the lower thermosphere
- Initial altitude: 350 km (circular orbit, high inclination)
- Downlink using the QB50 Network of Ground Stations
- On all other missions CubeSats are a secondary payload, on QB50 the CubeSats are the primary payload.

Functional Unit Power

Telecommunications

Tech Demostrations www.QB50.eu

von Karman Institute for Fluid Dynamics

NASA's Edison Demonstration of Smallsat Networks (EDSN)

UHF Crosslink

S-Band Downlink

EDSN

Enable Cross-Link Communication and Multipoint Physics

- 8 cubesats into a loose formation
- Approximately 500 km above Earth
- 1.5 cubesat unit
 - about the size of a tissue box
 - weighs approximately 4 pounds(2 kg)
- 60-day operational period in orbit.
- Make distributed, multipoint space radiation measurements.
- Demonstrate advanced communications, including a network that allows for data to be sent between satellites as needed.

Completed EDSN Spacecraft

- The largest sub-meter constellation of satellites
 - IKONOS can collect panchromatic and multispectral imagery which can be merged to create 0.82-meter color pan-sharpened imagery.
 - QuickBird is a 60 cm, 4-band color satellite, and is capable of collecting multispectral and panchromatic imagery.
 - WorldView-1 is a 50 cm TRUE*, panchromatic satellite and is also capable of collecting in-track stereo imagery.
 - GeoEye-1 acquires 50 cm TRUE* panchromatic and 2.0 meter multispectral imagery.
 - WorldView-2 is a 50 cm TRUE*, 8-band color satellite capable of collecting 2.0 meter multispectral, panchromatic, and in-track stereo imagery.

Disaster Monitoring Constellation

Surrey Satellite Technology LTD

SYZYGY Engineering

The <u>sun-synchronous orbits</u> of these satellites are coordinated so that the satellites follow each other around an orbital plane, ascending north over the Equator at 10:15 am local time (and 10:30 am local time for Beijing-1).

Virtual Mission Operations Center

dow Help		Mozilla Firefox	E C) 🖸 🥇 Ä	▲ ■ 奈 ୩	(Charged)	Wed 3:21 PM	I Ivancic,RC-RHN0) Q	
http://67.135.22pplication	n.html 🗙 🔽 demopolis mis	sissippi - Bing M × 📊 Pen	ding Invitations LinkedIn 🛛 🗙 🛐	Schneier on Security: I	Massive P ×	Login	× (+) -	
				 ਦ		sinni	Q 🖈 👰	
s - iavascript:popU							Bookmarks *	
		UNCLASSIFIED						
					🔵 Messages	User Name: St	even.Sage sign out	
ule (589)	inary (590)	Colla	29		13 23	13/1	Streets Topo Imagery	
the second					Analysis Results			
	TEX INF	WOSEIIe	the second se		Mission	Start Time	Duration	
5-589		Min Do	Quan sh05ena Pd	Ovett	GeoEye-1	13204840Z Feb13	4m 6s	
Bouin Rin	ver date	ALPHIA?	a vell-la- alle-la	80	GeoEye-1	13222521Z Feb13	5m 3s	
	à	CUL KEN		Sue He	GeoEye-1	14092133Z Feb13	6m 59s	
11/1/	- Filmer	AN ANTERIA	- Harry	Amo	GeoEye-1	14212234Z Feb13	6m 58s	
Sumrall MS-42	- ANY		A ANDA		GeoEye-1	15082015Z Feb13	5m 52s	
- AV		14 196 - 11	111		GeoEye-1	15095843Z Feb13	3m 22s	
	A DAY	6) 1-12	- Hh		IKONOS-2	13213627Z Feb13	7m 15s	
ibmit			depichton 40 MS-42		IKONOS-2	14083356Z Feb13	6m 27s	
Submit	a state	Evelyn Gan		- And	IKONOS-2	14221158Z Feb13	6m 31s	
Submit	1 Harrison	Petal	42 11-3 6		IKONOS-2	15090839Z Feb13	7m 17s	
131 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cole	Hattiesburg	COL TOP		QuickBird2	13211152Z Feb13	1m 8s	
	98	T A A	CAXDRF		hom	Close		
		TA ANA	C VULLA					
STY.	(/	EN AL			CP 1 1 CP	PAL DA		
and the second	V	A star	KINLE			1245.5		
	SELLER		Old P	(Shart	15	AANA		

Population Growth

Blackout of August 14, 2003

