

damicos@stanford.edu people.stanford.edu/damicos

Spacecraft Formation-Flying and Rendezvous: Flight Demonstrations and Way Forward

Simone D'Amico, PhD Assist. Prof. of Aeronautics and Astronautics Director, Space Rendezvous Lab

Table of Contents

- Distributed Space Systems
- Key Mission Achievements
- Advanced GN&C Subsystems
- Space Rendezvous Laboratory

PRISMA's Public Relations Camera (Tango spacecraft pictured by Mango)

Slide 2 D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

Why Distributed Space Systems?

- → Space Science
 - → Astronomical search for origins
 - → Solar system exploration
 - Structure and evolution of the universe
- Planetary Science
 - Synthetic aperture radar interferometry
 - → Gravity mapping
 - → Atmosphere characterization
- → Technology

ace

rendezvou

- Human exploration technology
- → On-orbit servicing and assembly
- Development of space infrastructure

What is a Distributed Space System?

D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

Distributed Space Systems Are Not New

Historic milestones

- → Short duration
- → Ground-control
- → Blank checks

Contemporary

- → Long duration
- → Autonomy
- → Cost constraints

Future

bace

rendezvou

- → Miniaturization
- → Distribution
- → Standardization

Туре	Involved	Year
First FF experiment	Gemini 6A & 7	1965
First automated docking	Kosmos 186 & 188	1967
RvD at other celestial bodies	Columbia & Eagle	1969
RvD with vehicles from 2 nations	Apollo & Soyuz	1975
RvD of 3 "objects"	D.Gardner, Weststar VI, Discovery	1984
Collision due to FF	Progress & MIR	1997
Autonomous FF	ETS-7	1998
Autonomous microsatellite RvD	XSS-11 & Minotaur 4th stage	2005
Collision due to RvD	DART & MUBLCOM	2005
First on-orbit servicing demo	Orbital Express	2007
Fully autonomous docking	ATV & ISS	2008

Slide 5

Most Recent Mission Achievements

E91

PRISMA: Prototype Research Instr. & Space Mission Tech. Advancement

- → Two microsatellites (Mango, Tango)
 - → Launch 2010 (Dnepr from Yasny)
 - → Presently in extended mission phase
 - → Sun-synch. orbit at 710 km altitude
- → GN&C software experiments
 - \rightarrow Autonomous formation flying (5 km 20 m)
 - → Homing and rendezvous (< 50 km)</p>
 - \rightarrow Proximity operations (100 m 0 m)
- → GN&C hardware experiments

ace

rendezvol

- → Green propellant & Micro-propulsion
- → GPS (DLR), FFRF (CNES), VBS (DTU)

PRISMA: Spacecraft

AOCS	/GN&C	Mango	Tango
Attitude control	Sensors	MM,SS,GYR,SCA	MM,SS
	Actuators	MT,RW	MT
Orbit Sensors control Actuators	Sensors	GPS,FFRF,VBS	-
	Actuators	6 1N-Hydrazine	-

Slide 8

SAFE: Spaceborne Autonomous Formation Flying Experiment

→ GPS receivers (DLR's Phoenix-S)

- High accuracy code and carrier phase measurements 7
- → Redundant and flexible system architecture

→ GPS-based real-time navigation system (GIF,GOP,GOD)

- \neg Absolute position accuracy of 3 m (3D, RMS)
- \neg Relative position accuracy of 0.2 m (3D, RMS)

Impulsive autonomous formation control (AFC) 7

- → Guidance based on relative eccentricity/inclination vectors
- \neg Relative orbit control accuracy of 30 m (3D, RMS)

Precise Orbit Determination (POD) $\overline{}$

- → Reduced-dynamic orbit determination from GPS raw data
- \rightarrow Absolute position accuracy of 0.2 m (3D, RMS)
- Relative position accuracy of 0.02 m (3D, RMS)

Key Objectives

rendezvou

On-Orbit

On-Ground

bace

D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

SAFE: Top Level Architecture

Architecture Design

rendezvou

Slide 10 D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

SAFE: GPS Hardware

- → Phoenix-S GPS Receiver
 - → SigTec, COTS
 - → DLR software
 - → 12 channels L1 C/A tracking
 - → Power 0.8 W (BOL) at +5V
 - → Latch-up/FDIR protection (SSC)
- → Performance

bace

rendezvou

- → C/A code noise 0.5 m @ 45 dB-Hz
- → Carrier tracking 1 mm @ 45 dB-Hz
- → Redundancy & Flexibility
 - → Two receivers and amplifiers
 - → Two passive antennas
 - Automatic switch of branches

SAFE: GPS-based Orbit Determination (GOD)

 $(2^{*}6)$

 $(2^{*}3)$

 $(2^{*}1)$

 $(2^{*}12)$

 $(1^{*}3)$

→ Extended Kalman Filter with 46+3 states

- → Absolute pos. and vel.
- \neg Aerodynamic drag (2*1)
- → Empirical accelerations
- Clock offsets
- → GRAPHIC float biases
- MAIN delta-v maneuver
- ✓ Measurements Concept
 - → Ionosphere free GRAPHIC data (<=2*12)
 </p>
 - → Single-difference Carrier Phase (<=12)
 </p>
- Dynamics Model

bace

rendezvou

- → 20x20 Earth's geopotential
- → Sun and Moon third-body
- → Jacchia-Gill density model
- → Solar radiation pressure

SAFE: Autonomous Formation Control (AFC)

- → Relative orbit parameterization
 - → Based on relative orbital elements (ROE)
 - → δa, δu or δλ, δe, δi
- → Relative Motion Model
 - \neg HCW + J_2 + Diff. Drag
 - → ROE as integration constants of HCW
- → In-plane Maneuver Planning
 - → Compensation of J_2 induced effects (δe)
 - → Compensation of diff. drag effects (δa)
 - → Pairs of along-track (or radial) maneuvers
- Out-of-plane Maneuver Planning
 - → Compensation of J_2 induced effects (δi)
 - → Required only if $i_2 \neq i_1$

ace

rendezvou

Single cross-track maneuver

SAFE: Precise Orbit Determination (Flight Results)

→ Performance

- \neg ~1 cm with ambiguity fixing
- Float ambiguity solution sufficient for verification
- ~2 cm propagation errors during 20 min. data gap
- Combined vs. Free flying
 - → High multipath/shadowing
 - → Accurate Tango attitude

integer ambiguity

float ambiguity

0.003±0.022

→ No orbit control maneuvers

-0.015±0.015

-0.010±0.045

Slide 15

SAFE: GPS Multipath (Flight Results)

rendezvou

D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

SAFE: GOD Flight Results

Sparse control/short range [Performance]

Rel. pos. 4.74±1.96 cm (3D) Rel. vel. 0.12±0.13 mm/s (3D)

Sparse control/far range [Performance]

Rel. pos. 5.30±2.60 cm (3D) Rel. vel. 0.20±0.36 mm/s (3D)

Forced motion control [Frequent thrust] Rel. pos. 14.83±8.01 cm (3D)

Rel. vel. 1.59±1.76 mm/s (3D)

Large attitude rotations [Robust] Rel. pos. 6.84±2.94 cm (3D) Rel. vel. 0.08±0.04 mm/s (3D)

D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

SAFE: AFC Flight Results

SAFE: AFC Flight Results

ARGON: Advanced Rendezvous using GPS and Optical Navigation

- Handover from Norad TLEs to vision-based navigation and control at 30 km separation
- Planning and execution of safe guidance strategy based on 7 relative eccentricity/inclination vector separation
- Collection and processing of camera images during complete rendezvous
- \neg Accurate relative orbit determination based on angles-only data and ROE linear dynamics model
- Ground-based maneuver planning and execution
- Range from 30 km to 3 km $\overline{}$
- Target identification at 90% hit rate 7
- Centroiding at sub-pixel accuracy
- \neg Angles-only navigation error <10 m ($\delta a, \delta e, \delta i$) and <300 m ($\delta \lambda$)

rendezvou

Functiona

Performance

pace

Slide 19

rendezvou

ARGON: Top Level Architecture

Slide 20

ARGON: Relative Orbit Determination (ROD)

Relative eccentricity and inclination vectors are observable! Low cost sensors, simplicity, and wide range Identical profile of measurements gives an infinite set of possible relative orbits

δe

Radial, R

Servicer

Cross-track, N

Client

δί

Along-track, T

δа

δu

ARGON: Image Processing Flight Results

D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

rendezvou

ARGON: ROD Flight Results

Slide 23 D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

ARGON: ROD Flight Results

Slide 24 D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

Stanford's Space Rendezvous Laboratory (SLAB)

High-Fidelity Hardware-in-the-Loop Testbed

D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014

Close-In Inspection of Tango down to 2m based on SAFE

Questions?

PRISMA's Navigation Camera (Tango spacecraft pictured by Mango)

Slide 29 D'Amico, S. > Spacecraft Formation Flying: Flight Demonstrations and Way Forward > 08/21/2014