

Planificaciones

8638 - Arquitecturas Paralelas

Docente responsable: PANTAZIS RICARDO DEMETRIO

OBJETIVOS

- a) Dar a los alumnos los conocimientos básicos para el análisis de multiprocesadores, multicomputadoras, y arquitecturas de alta performance.
- b) Presentar los aspectos esenciales que influyen en la performance y las relaciones de compromiso que existen entre

distintas alternativas.

- c) Describir arquitecturas implementadas fí-sicamente.
- d) Dar formación de investigación y profesional, requiriendo que los alumnos articulen en un proyecto los trabajos o investigaciones que realizaron basándose en los conceptos adquiridos en el curso.

CONTENIDOS MÍNIMOS

-

PROGRAMA SINTÉTICO

Teorí-a del Paralelismo.

Criterios de performance escalable.

Multiprocesadores, Multicomputadoras y Arquitecturas de Alta Performance.

Procesadores, Memoria y Redes de Interconexión.

PROGRAMA ANALÍTICO

1. Modelos de Computación Paralela

Evolución de arquitecturas de computadora.

Atributos de performance de sistemas.

2. Propiedades de Programas y Redes

Condiciones de paralelismo.

Partición de programas.

Mecanismos de flujo de programa.

Arquitecturas de interconexión de sistemas

3. Principios de Performance Escalable

Medidas y métricas de performance.

Leyes de incremento de velocidad.

Análisis de escalabilidad,

4. Procesadores y Jerarquí-a de Memoria

Tecnologí-a de procesadores.

Procesadores superescalares y vectoriales.

5. Bus, Cache, y Memoria Compartida

Sistemas de bus.

Memorias Cache.

Memoria Compartida.

6. Técnicas de Pipelining y Superescalares

Pipelines lineales y no lineales.

Pipelines de instrucciones.

Pipelines aritméticas.

Diseños superescalares y superpipeline.

7. Multiprocesadores y Multicomputadoras

Sistemas de interconexión de multiprocesadores.

Coherencia de memorias cache y mecanismos de sincronización.

Mecanismos de paso de mensajes,

8. Computadoras SIMD y Vectoriales

Principios de procesamiento vectorial.

Procesamiento vectorial compuesto.

9. Arquitecturas escalables

Técnicas de ocultamiento de latencia.

Principios de multithreading.

BIBLIOGRAFÍA

"Advanced Computer Architecture; Parallelism, Scalability, Programmability", Kai Hwang and Naresh Jotwani, McGraw Hill, 2015, ISBN-10: 9339220927

ISBN-13: 978-9339220921.

"Parallel Computer Architecture: A Hardware/Software Approach", David Culler, J.P. Singh, Morgan Kaufmann, 1999. ISBN 1-55860-343-3.

"Computer Architecture, Fourth Edition: A Quantitative Approach",

John L. Hennessy, David A. Patterson, Morgan Kaufmann, 2006. ISBN-10 0-12-370490-1.

"Parallel Programming for Multicore and Cluster Systems", Thomas Rauber y Gudula Rünger, Springer, 2010. ISBN:978-3-642-04817-3.

"The Sourcebook of Parallel Computing", Jack Dongarra (Editor), et al

Morgan Kaufmann, 2003. ISBN-10 1-55860-871-0.

"High-Performance Computer Architecture", Harold S. Stone, Addison Wesley, 1987.

"Matrix Computations", Golub y Van Loan, Johns Hopkins University Press, 1989. ISBN-10: 0801837391

RÉGIMEN DE CURSADA

Metodología de enseñanza

Clases Teóricas. Método analógico o comparativo.

Se utiliza también la modalidad seminario o taller

para fomentar la interacción y la participación de los alumnos.

Trabajo Final: se busca desarrollar la capacidad de comunicación escrita y de presentación oral del trabajo realizado. El trabajo es individual.

Luego de la defensa del trabajo final se realizará un coloquio integrador sobre todos los temas de la materia.

Modalidad de Evaluación Parcial

No existe evaluación parcial.

CALENDARIO DE CLASES

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<1> 09/03 al 14/03	Motivación Paralelismo. Nociones de complejidad computacional.					
<2> 16/03 al 21/03	Nociones de cálculo numérico. Efectos de la aritmética finita.					
<3> 23/03 al 28/03	Modelos de computación paralela.					
<4> 30/03 al 04/04	Propiedades de programas y de redes.					
<5> 06/04 al 11/04	Principios de performance escalable.					
<6> 13/04 al 18/04	Jerarquía de procesadores y memoria.					
<7> 20/04 al 25/04	Bus, memoria cache, y memoria compartida.					
<8> 27/04 al 02/05	Tecnologías de cauce (pipelining) y superescalares.					
<9> 04/05 al 09/05	Tecnologías de cauce (pipelining) y superescalares.					
<10> 11/05 al 16/05	Multiprocesadores y Multicomputadoras					
<11> 18/05 al 23/05	Multiprocesadores y Multicomputadoras.					
<12> 25/05 al 30/05	Descripción Arquitectura Paralela Específica: Duke Raycasting Machine.					
<13> 01/06 al 06/06	Computadoras SIMD y vectoriales.					
<14> 08/06 al 13/06	Arquitecturas escalables y de Flujo de Datos.					
<15> 15/06 al 20/06	Técnicas de ocultamiento de latencia.					
<16> 22/06 al 27/06	Resumen del curso y discusión de proyectos.					

CALENDARIO DE EVALUACIONES

Evaluación Parcial

Oportunidad	Semana	Fecha	Hora	Aula
10				
20				
30				
40				