

Planificaciones

8503 - Teoría de Circuitos y Sistemas

Docente responsable: KISIELEWSKY ADRIAN ERNESTO

OBJETIVOS

Lograr que los alumnos de Ingeniería Electricista comprendan y resuelvan el comportamiento de los circuitos eléctricos y sistemas electromecánicos, lineales y no lineales, en régimen permanente y transitorio fundamentado en forma teórica y haciendo uso de herramientas de cálculo matemático y computacional. Se pretende además que los conocimientos adquiridos sirvan de base para las materias profesionales de los últimos años de la carrera principalmente en áreas de teoría de control y accionamientos, sistemas eléctricos de potencia, y máquinas y equipos eléctricos. Se hace hincapié en el uso de variables de estado y cálculo matricial.

CONTENIDOS MÍNIMOS

-

PROGRAMA SINTÉTICO

- 1. COMPONENTES SIMETRICAS FALLAS ASIMÉTRICAS.
- 2. SISTEMAS ELECTROMECANICOS.
- 3. ECUACIONES DE REDES TOPOLOGÍA VARIABLES DE ESTADO.
- 4. FUNCIONES DE REDES TRANSFERENCIA BLOQUES FLUJOGRAMAS FÓRMULA DE MASON.
- 5. RESPUESTAS FORZADAS RESPUESTA EN FRECUENCIA- BODE NYQUIST.
- 6. RESPUESTA TEMPORAL TRANSITORIO POR MÉTODO CLÁSICO LAPLACE INTEGRALES DE DUHAMEL PULSOS CONFORMADOS CONVOLUCIÓN UNIVARIABLE Y MULTIVARIABLE.
- 7. CIRCUITOS NO LINEALES EN RÉGIMEN PERMANENTE Y TRANSITORIO FERRORESONANCIA.
- 8. ARMÓNICOS Y FILTROS.

PROGRAMA ANALÍTICO

1. COMPONENTES SIMETRICAS:

Representación de redes eléctricas con esquemas unifilares, trifilares y monofásicos estrella equivalente. Teorema de Fortescue y transformación de invariancia de potencia. Transformación de tensiones, corrientes e impedancias. La secuencia homopolar y la impedancia de neutro. Representación de sistemas de potencia. Cálculos en forma matricial. Casos particulares de transformación según el tipo de asimetría. Redes de secuencia. Análisis de asimetrías transversales y longitudinales.

2. SISTEMAS ELECTROMECANICOS:

Elementos eléctricos, mecánicos de traslación y mecánicos de rotación de 2 y 4 terminales. Transformador ideal y fuentes controladas. Transductores electromecánicos. Relaciones funcionales y energéticas. Formulación operacional. Representación simbólica circuital. Variables "entre" y "a través". Analogías directa e inversa de variables y parámetros. Circuitos eléctricos análogos. Introducción a las variables de estado.

3. ECUACIONES DE REDES:

Grafo orientado, ramales, eslabones. Relaciones funcionales de rama tipo. Matrices de cortes y bucles fundamentales. Relaciones topológicas, relación de Okada. Leyes de Kirchhoff en forma matricial. Orden de complejidad, cortes inductivos, bucles capacitivos, variables independientes. Formulación en base a variables de estado.

Cuadripolos. Formulaciones matriciales impedancia, admitancia, híbridas directa e inversa. Asociación de cuadripolos.

4. FUNCIONES DE REDES:

Transferencia. Expresión operacional y para excitación constante, exponencial y armónica. Representación gráfica de sistemas dinámicos: Diagramas de bloque, flujogramas, fórmula de Mason. Sistemas de control de lazo abierto y lazo cerrado. Realimentación negativa. Trazado de flujogramas por inspección y por método sistemático aplicando topología.

5. RESPUESTAS FORZADAS:

Método general para hallar la respuesta forzada. Método operacional con excitaciones continuas, exponenciales reales y complejas, y alternas sinusoidales. Señales exponenciales y el plano complejo. Polos y ceros de la función de transferencia. Constelación de polos y ceros. La respuesta forzada o la solución particular de la ecuación diferencial. Funciones de prueba.

Polos coincidentes en la excitación y en la transferencia. Polos en el origen en la transferencia. Respuesta frecuencial y el plano complejo. Diagramas de módulo y fase en función de la frecuencia. Escalas logarítmicas

(Bode). Trazado asintótico. Ancho de banda. Diagrama Polar (Nyquist).

6. RESPUESTA TEMPORAL:

Respuesta transitoria. Solución por método clásico: Respuesta natural más respuesta forzada. Condiciones iniciales y leyes de conmutación. Ecuación característica y tipos de raíces. Uso de variables de estado. Transitorios en corriente continua y corriente alterna. Apertura y cierre de interruptores. Tensión de restablecimiento y corriente de cortocircuito. Sistemas de segundo orden, respuesta standard, amortiguamiento.

La transformada de Laplace y su aplicación al estudio de transitorios. Planos real y complejo. Traslación en el tiempo y en el plano complejo. La función excitación y las condiciones iniciales. Circuito operacional relajado con generadores equivalentes a las condiciones iniciales. Descomposición en fracciones parciales para antitransformar. Teorema de los valores inicial y final. Integral de convolución. Pulsos conformados. Excitaciones de forma arbitararia. Fórmulas de Duhamel por escalones e impulsos. Excitaciones con discontinuidades. Excitación escalón y respuesta indicial. Excitación impulso y respuesta impulsiva. Variables de estado y Laplace: Convolución univariable.

Convolución multivariable con excitación múltiple. Solución integral. Respuesta a estado "cero" (desexcitado). Matriz de transición de estados. Cayley-Hamilton. Sistemas con elementos no lineales y variables en el tiempo. Solución numérica computacional.

7. CIRCUITOS NO LINEALES:

Sistemas convencionalmente no lineales, inerciales, e intrínsecamente no lineales.

Régimen permanente: Métodos gráficos. Elementos no lineales en corriente continua. Elementos no lineales en corriente alterna, armónicas, Fourier gráfico. Métodos de la primera armónica y del valor sinusoidal equivalente. Ferroresonancia.

Régimen transitorio: Linealización simple y cálculo numérico. Aproximación análitica de la curva no lineal. Estabilidad. Variables de estado en sistemas no lineales. Comportamiento dinámico y el plano de estado. Nodos, focos y ciclos límites. Caos.

8. ARMÓNICOS Y FILTROS:

Aplicación de la serie de Fourier para la solución de circuitos con excitaciones poliarmónicas. Espectro de frecuencias. Armónicos en sistemas de corriente alterna. Filtros.

Integral y transformada de Fourier, componentes de alta frecuencia en la tensión de impulso atmosférico.

BIBLIOGRAFÍA

- -"Principios de Electrotecnia tomo 2", Netushil Strajov.
- -"Teoría de Sistemas y Circuitos", Gerez -Murray Lasso.
- -"Circuitos y Sistemas Electromecánicos", Gerez Greisser.
- -"Teoría de Circuitos y Sistemas", Van Valkenburg.
- -"Network Analysis", Van Valkenburg.
- -"Análisis de Sistemas Eléctricos de Potencia", W.Stevenson.
- -"Sistemas Realimentados de Control", Dazzo Houpis
- -"Circuitos en Ingeniería Eléctrica", Skilling.
- -"Basic Circuit Theory", Desoer-Kuh.
- -"Ingeniería de Control Moderno", Ogata.
- -"Circuitos Eléctricos", Staff del MIT.

RÉGIMEN DE CURSADA

Metodología de enseñanza

- -Estudio individual del tema del día con apuntes/libros preparados y/o recomendados por la Cátedra.
- -Clase teórica (2 hs) dedicada a la fundamentación analítico-conceptual. Obligatoria.
- -Clase teórico-práctica (1 hs) destinada a complementar la aplicación y cuantificación. Grupal. Obligatoria.
- -Clase práctica (3 hs) para la realización de problemas de aplicación. Grupal. Obligatoria.
- -Desarrollo por grupos de trabajos especiales, con presentación de informe obligatorio.

Modalidad de Evaluación Parcial

- -Evaluaciones parciales: se toma una evaluación y dos recuperaciones escritas pudiendo complementarse con interrogatorios orales.
- -Evaluaciones integradoras: Serán tomadas por escrito, pudiéndose complementar con interrogatorios orales.

CALENDARIO DE CLASES

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<1> 09/03 al 14/03	COMPONENTES SIMETRICAS 1: Intro + modelos	COMPONENTES SIMETRICAS 2: Intro + modelos + Fallas con circ. Secuencia + fallas asimetricas s/circuitos de sec + modal				
<2> 16/03 al 21/03	SISTEMAS ELECTROMECA NICOS	COMPONENTES SIMÉTRICAS 1				
<3> 23/03 al 28/03	ECUACIONES DE REDES 1: intro, nodos, mallas, cortes y lazos	COMPONENTES SIMÉTRICAS 2				
<4> 30/03 al 04/04	FERIADO	SISTEMAS ELECTROMECA NICOS				
<5> 06/04 al 11/04	ECUACIONES DE REDES 2: MNA + state space	ECUACIONES DE REDES 1				
<6> 13/04 al 18/04	Funciones de redes: transferencia: Mason, Bloques	ECUACIONES DE REDES 2				
<7> 20/04 al 25/04	Respuestas frecuenciales: Diagrama de Bode	Funciones de redes: transferencia				
<8> 27/04 al 02/05	FERIADO	Respuestas forzadas y frecuenciales				
<9> 04/05 al 09/05	RESPUESTA TEMPORAL (CLASICO): Forzada, Natural + zero input, zero state + state space	MATLAB	TP MATLAB			
<10> 11/05 al 16/05	RESPUESTA TEMPORAL (LAPLACE, PULOS CONF)	RESPUESTA TEMPORAL (CLASICO)				
<11> 18/05 al 23/05	RESPUESTA TEMPORAL (CONVOLUCION) : uni y multivariable, Duhamel, Cayley Hamilton	RESPUESTA TEMPORAL LAPLACE				
<12> 25/05 al 30/05	EVALUACIÓN PARCIAL	RESPUESTA TEMPORAL (CONVOLUCION)	FERRORESONANCIA			
<13> 01/06 al 06/06	NO LINEALES PERMANENTE	REPASO GENERAL				

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<14> 08/06 al 13/06	REC EVALUACIÓN PARCIAL	Rev. TP + Consultas		LÍMITE APROB. TP 2		
<15> 15/06 al 20/06	NO LINEALES TRANSITORIO	No Lineales		LÍMITE APROB. TP 2		
<16> 22/06 al 27/06	2 REC EVALUACIÓN PARCIAL	Rev. TP + Consultas				

CALENDARIO DE EVALUACIONES

Evaluación Parcial

Oportunidad	Semana	Fecha	Hora	Aula		
10	12	06/11	17:30	S26		
20	14	20/11	17:30	S26		
3º	16	04/12	17:30	S26		
40						
Otras observaciones						
Abarca hasta Convolución						