

# **Planificaciones**

8105 - Análisis Matemático III A

Docente responsable: GONZALEZ GRACIELA ADRIANA

#### **OBJETIVOS**

- a: Que el alumno adquiera los conocimientos conceptuales y habilidades operacionales involucrados en los contenidos de la asignatura integrándolos con los conocimientos de las asignaturas previas del Departamento.
- b: Que el alumno utilice el desarrollo de los distintos contenidos para consolidar su razonamiento lógico.
- c: Incentivar al alumno a utilizar modelos matemáticos y aplicaciones vinculados con los contenidos de la asignatura .

# **CONTENIDOS MÍNIMOS**

-

## PROGRAMA SINTÉTICO

- Números complejos.
- Funciones de variable compleja. Derivabilidad y holomorfía. Transformación conforme.
- Integración. Teorema de Cauchy.
- Series funcionales. Taylor. Laurent.
- Singularidades y residuos.
- -. Ecuaciones diferenciales en derivadas parciales clásicas y problemas de contorno. Ecuaciones de Laplace, del calor y de ondas.
- Series de Fourier y su aplicación a la resolución de ecuaciones diferenciales en derivadas parciales. Método de separación de variables.
- Transformadas integrales. Transformadas de Laplace y Fourier. Aplicaciones

## PROGRAMA ANALÍTICO

- 1. Números complejos. Regiones en el plano complejo. Plano complejo extendido.
- 2. Funciones complejas. Límite y continuidad. Derivabilidad. Condiciones de Cauchy-Riemann. Holomorfía. Funciones armónicas. Interpretación geométrica de la derivada. Transformaciones conformes. Estudio de las funciones elementales y multiformes.
- 3. Integración de funciones de variable compleja.

Integral curvilínea. Definición. Propiedades. Teorema de Cauchy. Corolarios. Fórmula integral de Cauchy. Fórmulas generalizadas de Cauchy. Teoremas relacionados.

- 4. Sucesiones y series numéricas. Sucesiones
- y series funcionales. Convergencia puntual y uniforme. Criterio de Weierstrass. Integración y derivación de series. Series de potencias. Series de Taylor y Laurent.
- 5. Singularidades. Residuos. Teorema de los residuos. Aplicación al cálculo de integrales de variable real. Integrales impropias de variable real: convergencia y cálculo mediante el teorema de los residuos.
- 6. Ecuaciones en derivadas parciales clásicas y problemas de contorno. Ecuaciones de Laplace, del calor y de ondas. Método de D'Alembert. Resolución mediante transformación conforme.
- 7. Series de Fourier. Propiedades. Convergencia. Método de separación de variables.
- 8. Transformada de Fourier. Existencia. Propiedades. Aplicaciones a la resolución de ecuaciones diferenciales.
- 9. Transformada de Laplace. Existencia. Propiedades. Aplicación a la resolución de ecuaciones diferenciales ordinarias y sistemas de ecuaciones diferenciales ordinarias.

#### **BIBLIOGRAFÍA**

**BIBLIOGRAFIA BASICA** 

- (1) M. Balanzat, Matemática avanzada para la física, Eudeba, 1994.
- (2) R. Churchill, Variable Compleja y aplicaciones, Mc. Graw Hill, 1960.
- (3) W. Derrick. Variable compleja con aplicaciones, Grupo Editorial Sudamericana, 1984.
- (4) R. Gabel Y R. Roberts, Señales y sistemas lineales, Limusa, 1975.
- (5) H.Kwakernaak, R.Sivan, Modern Signals and Systems. Prentice Hall, Englewood Cliffs, N.J. 1991.
- (6) A.V. Oppenheim, A.S. Willsky, with I.T. Young, Signals and Systems. Prentice Hall, Englewood Cliffs, N.J, 1983.
- (7) P. Duchateaw y D. Zachmann, Ecuaciones Diferenciales Parciales, Scawn Mc. Graw Hill, 1988.
- (8) H. Weinberger, Ecuaciones diferenciales en derivadas parciales, Reverte, 1970.
- (9) M.J. Lighthill, Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press, Cambridge, 1958.
- (10) A.H. Zemanian, Distribution Theory and Transform Analysis. McGraw-Hill Book Company, New York, 1965.
- (11) R. Churchill Series de Fourier y Problemas de Contorno, Mc. Graw Hill, 1965.

#### . BIBLIOGRAFIA DE CONSULTA:

- (i) L. Ahlfors, Complex Analysis, Mc. Graw Hill, 1966.
- (ii) Markushevich. Teoría de las funciones analíticas, Vol. I, Mir, 1970.
- (iii) L. Pennisi, Elements of complex variables Holt, Rinehart and Winston, 1963.
- (iv) D. Wunsch, Variable Compleja con Aplicaciones, Addison-Wesley Iberoamericana, S. A., U.S.A., 1994.
- (v) J. Miles, Transformadoras integrales en Matemática Aplicada, Paraninfo, 1978.
- (vi) M. Braun, Ecuaciones diferenciales y sus aplicaciones, Grupo Editorial Iberoamérica, 1990.
- (vii) E. Kreyszig, Matemática avanzada para Ingeniería, vol. I yll, Limusa, 1990.
- (viii) W. Boyce, R. Di Prima, Ecuaciones Diferenciales y Problemas con valores en la Frontera, Limusa, 1979.
- (ix) J.S. Robertson, Engineering Mathematics with Mathematica, Mc.Graw Hill, 1994.
- (x) A.N. Kolmogorov, S. V. Fomin, Elementos de la teoría de funciones y de análisis funcional, Editorial MIR, 1975.
- (xi) R.K. Nagle, E.B. Saff, A.D. Snider, Ecuaciones Diferenciales y Problemas con Valores en la Frontera. 3ra.Edición. Pearson Educación. México. 2001.
- (xii) D. J. Zill, Ecuaciones Diferenciales con aplicaciones de modelado, 6ta. Edición, Internatonal Thompson Editores, México, 1997.

# **RÉGIMEN DE CURSADA**

Metodología de enseñanza

Clases teóricas: expositivas-participativas.

Clases prácticas: resolución de problemas con participación de los alumnos y consultas.

#### Modalidad de Evaluación Parcial

Se evaluará el proceso de aprendizaje mediante una Evaluación Parcial y una Evaluación Integradora ambas escritas, sin división de los temas en unidades temáticas.

# **CALENDARIO DE CLASES**

| Semana                 | Temas de teoría                                                                                                                   | Resolución<br>de problemas  | Laboratorio | Otro tipo | Fecha entrega<br>Informe TP | Bibliografía<br>básica |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|-----------|-----------------------------|------------------------|
| <1><br>09/03 al 14/03  | Números complejos.<br>Funciones de variable compleja.<br>Límite y continuidad.                                                    | Trabajo Práctico nro. 1 y 2 |             |           |                             | (1) (2) (3)            |
| <2> 16/03 al 21/03     | Derivabilidad y holomorfía.                                                                                                       | Trabajo Práctico nro. 2     |             |           |                             | (1) (2) (3)            |
| <3><br>23/03 al 28/03  | Funciones elementales y multiformes.                                                                                              | Trabajo Práctico nro. 2     |             |           |                             | (1) (2) (3)            |
| <4><br>30/03 al 04/04  | Transformación conforme.<br>Integración.                                                                                          | Trabajo Práctico nro. 2 y 3 |             |           |                             | (1) (2) (3)            |
| <5><br>06/04 al 11/04  | Teorema de Cauchy.                                                                                                                | Trabajo Práctico nro. 3     |             |           |                             | (1) (2) (3)            |
| <6><br>13/04 al 18/04  | Sucesiones y series numéricas.                                                                                                    | Trabajo Práctico nro. 4     |             |           |                             | (1) (2) (3)            |
| <7> 20/04 al 25/04     | Series de funciones. Series de Taylor.                                                                                            | Trabajo Práctico nro. 4     |             |           |                             | (1) (2) (3)            |
| <8> 27/04 al 02/05     | Series de Laurent.<br>Singularidades.                                                                                             | Trabajo Práctico nro. 4 y 5 |             |           |                             | (1) (2) (3)            |
| <9><br>04/05 al 09/05  | Residuos. Cálculo de integrales impropias.                                                                                        | Trabajo Práctico nro. 5     |             |           |                             | (1) (2) (3)            |
| <10><br>11/05 al 16/05 | Repaso.<br>Examen PARCIAL. Primera<br>fecha.                                                                                      | Trabajo Práctico nro. 5     |             |           |                             | (1)(8) (11)            |
| <11><br>18/05 al 23/05 | Introducción a las ecuaciones diferenciales en derivadas parciales (EDDP). Resolución de EDDP mediante transformación conforme.   | Trabajo Práctico nro. 6     |             |           |                             | (1)(8) (11)            |
| <12><br>25/05 al 30/05 | Series de Fourier.                                                                                                                | Trabajo Práctico nro. 7     |             |           |                             | (1)(8) (11)            |
| <13><br>01/06 al 06/06 | Resolución de EDDP mediante el<br>método de separación de<br>variables.<br>Examen PARCIAL. Segunda<br>fecha.                      | Trabajo Práctico nro. 7     |             |           |                             | (1)(8) (11)            |
| <14><br>08/06 al 13/06 | Transformada de Fourier.                                                                                                          | Trabajo Práctico nro. 8     |             |           |                             | (8) (11)               |
| <15><br>15/06 al 20/06 | Resolución de EDDP mediante<br>transformada de Fourier.<br>Transformada de Laplace y<br>propiedades.                              | Trabajo Práctico nro. 8 y 9 |             |           |                             | (2)(8) (11)            |
| <16><br>22/06 al 27/06 | Resolución de ecuaciones<br>diferenciales ordinarias<br>mediante transformada de<br>Laplace.<br>Examen PARCIAI. Tercera<br>fecha. | Trabajo Práctico nro. 9     |             |           |                             | (2)(8) (11)            |

# **CALENDARIO DE EVALUACIONES**

### **Evaluación Parcial**

| Oportunidad                                             | Semana | Fecha | Hora | Aula |  |  |  |  |
|---------------------------------------------------------|--------|-------|------|------|--|--|--|--|
| 10                                                      | 10     |       |      |      |  |  |  |  |
| 20                                                      | 13     |       |      |      |  |  |  |  |
| 30                                                      | 16     |       |      |      |  |  |  |  |
| 4º                                                      |        |       |      |      |  |  |  |  |
| Observaciones sobre el Temario de la Evaluación Parcial |        |       |      |      |  |  |  |  |
| Cada curso toma su evaluación parcial                   |        |       |      |      |  |  |  |  |
| Otras observaciones                                     |        |       |      |      |  |  |  |  |
| Cada comisión toma su evaluación parcial.               |        |       |      |      |  |  |  |  |