

Planificaciones

6906 - Modelos Hidráulicos

Docente responsable: HOPWOOD HAROLDO JUAN

OBJETIVOS

Introducción a las metodologías y aplicaciones de la hidráulica computacional y experimental en el campo de la ingeniería hidráulica. Introducción al cálculo en régimen impermanente de escurrimientos a presión y a superficie libre. Introducción a la hidráulica experimental (modelos y ensayos físicos) y sus aplicaciones en ingeniería hidráulica.

CONTENIDOS MÍNIMOS

-

PROGRAMA SINTÉTICO

Cálculo hidráulico en régimen permanente en 1, 2 y 3 dimensiones, con base en las ecuaciones diferenciales e integrales respectivas.

PROGRAMA ANALÍTICO

TEMA 1 : Ecuaciones básicas : rol de los modelos en la Ingeniería Hidráulica. Modelos físicos y matemáticos. Ecuaciones básicas de la hidráulica. Ecuaciones general de conservación de : masa (continuidad) . cantidad de movimiento (Navier-Stokes) . Energía . Ecuaciones diferenciales en derivados parciales: clasificación matemática y física.

TEMA 2 : Método de las curvas características : Ecuaciones características, cleridades, invariantes de Riemann, ondas períodicas de pequeña amplitud. Escurrimientos a superficie libre y a presión.

Tema 3 : Método de los elementos finitos : Características principales. Método directo de la rigídez. Método variacional. Ejemplo bidimensional: percolación con superficie libre y a presión .

Tema 4 : Ecuaciones en diferencias finitas : Consistencia, estabilidad y convergencia, Operadores elementales: características de amplitud y fase. Métodos explícitos e implícitos. Ejemplo; onda simple de pequeña amplitud, difusión de contaminantes, flujo potencial.

Tema 5 : Translación de ondas de crecidas : Ecuaciones de Saint Venant. Soluciones simplificadas: Celeridad y atenuación de ondas de crecida en río. Ejemplo: Modelos hidrodinámicos unidimensionales en línea y red de canales. Modelos bidimensionales de Saint Venant.

Tema 6 : Fundamentos de los modelos físicos : Análisis dimensional. Semenjaza hidrodinámica. Número adimensionales. Básicos. Escala de los modelos físicos.

Tema 7 : Medición de las variables de la corriente : Equipos de medición. Valores medios y fluctuantes. Velocidades, gastos líquidos y sólidos, niveles de agua y de lecho, presiones, etc. Tratamiento de datos.

Tema 8 : Los laboratorios de hidráulica : Instalaciones, equipos, Instrumental, actividades de apoyo. Técnicas de modelación. Tipos de modelos y su ubicación en el laboratorio. Materiales y construcción de modelos. Alimentación y descarga de los modelos

Tema 9 : Modelos de sistemas de presión : Criterios de semejanza. Instalaciones e instrumentación. Flujo permanente en turberías; pérdidas locales y por fricción. Golpe de ariete; chimenea de equilibrio, válvula y disipadores de presión .

Tema 10 : Modelos de obras hidráulicas : Criterios de semejanza. Vórtices y circulación. Obras hidráulicas menores. Obras de alivio. Obras de toma, y descargadores de fondo. Disipadores de energía.

Tema 11: Modelos Fluviales: Modelos de fondo fijo. Modelos de fondo móvil. Semejanza de iniciación de movimiento. Semejanza de transporte de sedimiento. Métodos empíricos y formales para la determinación de escalas. Modelos de corrección fluvial, tomas y descargas de ríos, erosión local al pie de obras fijas.

Tema 12 : Modelos Marítimos : Criterios de semejanza del movimiento de olas y mareas: Métodos e instrumentos de laboratorios Modelos de obras costeras; olas en aguas poco profundas; deriva litoral; canales de acceso; defensas costeras. Modelos de agitación portuaria.

BIBLIOGRAFÍA

Referencias primarias:

- 2). V.L.Streeter, E.B.Wylie: Mecánica de Fluídos, J.Wiley 1975.
- 1). M.B.Abbott: Computational Hydraulics, Elements of the Theory of free surface flows, Pitman, 1979.
- 3). O.C.Zienkiewicz: El Método de los Elementos Finitos, J.Wiley, 1982.
- 4). Cunge, Holly Verwey: Practical aspects of Computational River hydraulics, Pitman 1980.
- 5). Vergara, Miguel A: Técnicas de Modelación en Hidráulica Alfa Omega 1995.
- 6). Hydraulic Modeling, Manual ASCE # 97, ASCE 2000.

Referencias generales:

- 6). L.C.van Rijn: Principles of Fluid Flow and Surface Waves in Rivers, Estuaries, Seas and Oceans, Aqua Publications, 1994.
- 7). J.O.Hinze: Turbulence, McGraw Hill, 1959.
- 8). Henderson, F.M. Open Channel Flow- Macmillan-1966
- 9). A.J.Raudkivi, R.A.Callander: Advanced Fluid Mechanics an introduction, Arnold, 1975.
- 10). W.Rodi: Turbulence models and their applications in Hydraulics, IAHR, 1980.
- 11). A.A.Townsend: The Structure of Turbulent Shear Flow, 2a Edición Cambridge University Press 1976.
- 12). M.B.Abbott: Computational Hydraulics, Elements of the theory of free surface flows. Pitman 1979.
- 13). C.B. Vreugdenhil: Computational Hydraulics an introduction, Springer Verlag, 1989.
- 14). M.B.Abbott, A.W.Minns: Computational Hydraulics, second edition, Ashgate 1998.
- 15). H.Lamb: Hydrodynamics, 6a edición, Dover, 1945
- 16). H.C.Martin y G.F.Carey: Introduction to Finite Element Analysis, McGraw Hill, 1973.
- 17). O.C.Zienkiewicz, R.L.Taylor: El Método de los Elementos finitos, Vol 1 Formulación básica y Problemas lineales, Vol 2 Mecánica de sólidos y fluídosDinámica y no linealidad. 4a Edición Mc Graw Hill, Cimne Barcelona. 1995.
- 18). J.J.Connor, C.A. Brebbia: Finite Element Techniques for Fluid Flow, Newnes Butterworths, 1976.
- 19). D.H.Norrie, G.de Vries: The Finite Element Method, Fundamentals and applications, Academic Press, 1973
- 20). A. Verruit: Theory of ground water flow, Macmillan 1970.
- 21). M.S. Yalin: River Mechanics, Pergamon Press, 1992.
- 22). J.P.Benque, A.Hauguel, P.L.Viollet: Engineering Applications of Computational Hydraulics, Volumen II, Pitman, 1982.
- 23). E.Oran Bringham: The Fast Fourier Transform and its applications, Prentice Hall. 1988.

RÉGIMEN DE CURSADA

Metodología de enseñanza

Desarrollo de clases teórico – prácticos integrados. Se aplican los siguientes criterios para el desarrollo de la materia y selección de material :

- a) Desarrollo de metodologías de cálculo / modelación de problemas reconocibles dentro del campo de la ingeniería hidráulica.
- b) Resolución de un mismo problema medianye el uso de herramientas alternativas, aplicando soluciones analíticas, numéricas y/o de ensayo físico.

Modalidad de Evaluación Parcial

Se elabora una carpeta de trabajos prácticos con predominio de trabajos con datos individuales.

Se toman dos parciales de evaluación teórico – práctico conforme al siguiente detalle :

Parcial 1 Ecuaciónes básicas, cálculo hidrodinámico mediante el método de las características y diferencias finitas.

Parcial integrador: Ecuaciones básicas, calculo de flujo en medios permeables mediante el método de elementos finitos. Modelos hidráulicos físicos.

Aprobación cursada: parciales y la carpeta aprobados.

Calificación de la cursada : es la nota promedio de los parciales y de la carpeta de trabajos.

Aprobación de la materia:

Promedio igual o mayor de 7 : Pasa a a la fecha del coloquio, promociona con la nota promedio de la cursada.

Promedio entre 4 y 7 : accede al coloquio integrador, si reune conocimientos suficientes para aprobar el coloquio la nota del mismo se promedia con la nota de la cursada.

CALENDARIO DE CLASES

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<1> 09/03 al 14/03	Ecuaciones básicas	1				1,2
<2> 16/03 al 21/03	Ecuaciones básicas	1				1,2
<3> 23/03 al 28/03	Método de las características	2				1,2
<4> 30/03 al 04/04	Método de las características	2				1,2
<5> 06/04 al 11/04	Método de diferencias finitas	3				1,2
<6> 13/04 al 18/04	Método de diferencias finitas	3				2
<7> 20/04 al 25/04	Método de diferencias finitas	3				2
<8> 27/04 al 02/05	Ondas de crecida y de marea, aplicacion ecuaciones St Venant					
<9> 04/05 al 09/05	Elementos Finitos	4				4
<10> 11/05 al 16/05	Consultas y Primer parcial	5				3
<11> 18/05 al 23/05	Elementos Finitos	5				3
<12> 25/05 al 30/05	Elementos Finitos	5				3
<13> 01/06 al 06/06	Modelos Físicos	6				5
<14> 08/06 al 13/06	Modelos Físicos Recuperación 1 Parcial 1	6	Laboratorio en Fiuba			5
<15> 15/06 al 20/06	Modelos Físicos	6	Visita a Laboratorio externo			5
<16> 22/06 al 27/06	Clase consultas para parcial integrador					

CALENDARIO DE EVALUACIONES

Evaluación Parcial

Oportunidad	Semana	Fecha	Hora	Aula
1º	10	13/05	15:00	308
20	14	10/06	15:00	308
30	16	26/06	15:00	308
40				