

Planificaciones

Docente responsable: GOLDSCHMIT MARCELA BEATRIZ

OBJETIVOS

Introducir al estudiante en las técnicas avanzadas de simulación en la mecánica de fluidos usando la técnica de elementos finitos.

CONTENIDOS MÍNIMOS

-

PROGRAMA SINTÉTICO

Solución de problemas no-lineales Convección-difusión no-lineal Flujo incompresible laminar Flujo incompresible turbulento Interfaces entre dos fluidos incompresibles Flujo compresible a bajo número de Mach

PROGRAMA ANALÍTICO

SOLUCION DE PROBLEMAS NO-LINEALES

Métodos iterativos. Método de Newton-Raphson. Método BFGS. Métodos tipo Riks. Métodos de búsqueda lineal

Criterios de convergencia.

Modelos bifásicos

CONVECCIÓN-DIFUSIÓN NO-LINEAL

No – linealidades del coeficiente de difusión. Coeficiente de conductividad función de la temperatura. Difusividad másica función de la concentración.

No – linealidades del término volumétrico. Radiación en problemas térmicos. Reacción química en el balance de masa.

No – linealidades del término transitorio. Cambio de fase en problemas térmicos y en el balance de masa. Aplicación de los métodos SUPG ("streamline upwind Petrov Galerkin"), GLS ("Galerkin least square"), características. Estado estacionario y estado transitorio.

FLUJO INCOMPRESIBLE LAMINAR

Ecuaciones de Navier-Stokes. Tratamiento de la no-linealidad del término convectivo.

Estabilización del término convectivo.

Discretización Velocidad-Presion. Penalización de la presión. Penalización por el método de augmented Lagrangian.

Método CBS ("characteristics based split ").

Acoplamiento térmico. Flotación.

FLUJO INCOMPRESIBLE TURBULENTO

Modelado de flujo turbulento. Ecuaciones de tensiones de Reynolds.

Modelos de longitud de mezcla

Modelos de una ecuación. Modelo k-L. (k: energía cinética turbulenta, L: longitud de mezcla).

Modelos de dos ecuaciones. Modelo k-. (: velocidad de disipación de energía cinética turbulenta).

Modelos de alto y bajo número de Reynolds.

Funciones de pared.

Acoplamiento térmico. Funciones de pared térmicas.

INTERFACES ENTRE DOS FLUIDOS INCOMPRESIBLES

Método de las pseudoconcentraciones o método del color. Superficie libres.

FLUJO COMPRESIBLE A BAJO NÚMERO DE MACH

Forma conservativa de las ecuaciones de flujo compresible.

Diferentes relaciones densidad-presión.

Modelos estacionarios y transitorios.

MODELOS BIFÁSICOS

Modelos pseudohomogéneos de plumas gaseosas en líquidos. Modelo ASM ("algebraic slip model") de plumas gaseosas en líquidos. Modelos bifásicos euleriano-euleriano. Flujo laminar y turbulento.

BIBLIOGRAFÍA

O.C. Zienkiewicz y R.L. Taylor, The finite element method. Volume 3: Fluid dynamics, Fifth Edition, Butterworth Heinemann Ed., Oxford, 2000.

- P.M. Gresho y R.L. Sani, Incompresible flow and the finite element method. Advection-diffusion and isothermal laminar flow, John Wiley, 1999.
- O. Pironneau, Finite element methods for fluids, J. Wiley, 1989.
- C. Cuvelier, A. Segal y A.A. van Steenhoven, Finite element methods and Navier-Stokes equations, D. Reidel Publishing Company,1986.
- B. Mohammadi y O. Pironneau, Analysis of the K-Epsilon Turbulence model, J. Wiley, 1994.
- R. Löhner, Applied CFD techniques, An introduction based on finite element methods, J. Wiley, 2001.
- A. Chorin y J.E. Marsden, A mathematical introduction to fluid mechanics, Springer Verlag, 1980.

RÉGIMEN DE CURSADA

Metodología de enseñanza Teórico, práctico con realización de prácticos especiales.

Modalidad de Evaluación Parcial Evaluaciones diarias a criterio del profesor Trabajos prácticos obligatorios Realización de un trabajo práctico especial individual.

CALENDARIO DE CLASES

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<1> 09/03 al 14/03	Solución de problemas no- lineales					Zienkiewicz y Taylor, The finite element method. Volume 3: Fluid dynamics
<2> 16/03 al 21/03	Solución de problemas no- lineales	Solución de problemas no- lineales				idem
<3> 23/03 al 28/03	Convección- difusión no- lineal					idem
<4> 30/03 al 04/04	Convección- difusión no- lineal	Convección-difusión no- lineal			Solución de problemas no- lineales	idem
<5> 06/04 al 11/04	Flujo incompresible laminar					idem
<6> 13/04 al 18/04	Flujo incompresible laminar	Flujo incompresible laminar			Convección-difusión no- lineal	idem
<7> 20/04 al 25/04	Flujo incompresible laminar					idem
<8> 27/04 al 02/05	Flujo incompresible turbulento			Modelado por elementos finitos de las variables turbulentas	Flujo incompresible laminar	idem
<9> 04/05 al 09/05	Flujo incompresible turbulento			Modelos de bajo Reynolds Funciones de pared		idem
<10> 11/05 al 16/05	Interfaces entre dos fluidos incompresible s			Acoplamiento térmico de las ecuaciones del modelo k-e Leyes de pared de la capa límite térmica		idem
<11> 18/05 al 23/05	Interfaces entre dos fluidos incompresible s			Flujos turbulentos de geometría simple		idem
<12> 25/05 al 30/05	Flujo compresible a bajo número de Mach			Jet libre plano		idem
<13> 01/06 al 06/06	Flujo compresible a bajo número de Mach			El método de las pseudoconce ntraciones		idem
<14> 08/06 al 13/06	Modelos bifásicos					idem
<15>	Modelos			Movimiento		idem

۸	ctus	liza	ción:	100	/20	1 O
А	crua	IIZA	CION:	1 1 1	//()	19

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
15/06 al 20/06	bifásicos			de partículas en flujo laminares y turbulentos		
<16> 22/06 al 27/06	Repaso general	Repaso general		Repaso general		idem

CALENDARIO DE EVALUACIONES

Evaluación Parcial

Oportunidad	Semana	Fecha	Hora	Aula
1º	11	23/05	17:00	LAME
20	12	30/05	17:00	LAME
3°	13	06/06	17:00	LAME
40	14			

Observaciones sobre el Temario de la Evaluación Parcial

La evaluación parcial se toma a convenir con los alumnos. Cada estudiante debe preparar y dar un seminario como trabajo especial.