

Planificaciones

6661 - Tecnología de Circuitos Integrados

Docente responsable: GARCIA INZA MARIANO ANDRES

OBJETIVOS

En la materia se estudia el diseño de circuitos integrados CMOS. Esto abarca bloques digitales elementales (compuertas y registros), circuitos analógicos (amplificadores, referencias de tensión/corriente) y circuitos de señal mixta (comparadores, conversores de datos). Finalmente se introduce el diseño de sensores CMOS para aplicaciones específicas.

CONTENIDOS MÍNIMOS

-

PROGRAMA SINTÉTICO

- -TECNOLOGIA Y FABRICACION DE CIRCUITOS INTEGRADOS
- -DISPOSITIVOS CMOS
- -DISEÑO FISICO
- -EL INVERSOR CMOS
- -CIRCUITOS DIGITALES CMOS
- -CIRCUITOS ANALÓGICOS
- -MEMORIAS
- -CONVERSORES DE DATOS

PROGRAMA ANALÍTICO

- 1. TECNOLOGIA Y FABRICACION DE CIRCUITOS INTEGRADOS
- -Características del silicio y del oxido de silicio
- -Fotolitografía
- -Implante/difusión de dopantes
- -Fabricación de transistores bipolares
- -Fabricación de transistores MOS

2. DISPOSITIVOS CMOS

- -Juntura MOS y tensión umbral
- -MOSFETs: modelos analíticos y empíricos
- -Dimensionamiento de los dispositivos

3. DISEÑO FISICO

- -Reglas de diseño
- -Programas de diseño
- -Validación y verificación

4. EL INVERSOR CMOS

- -Velocidad de propagación
- -Potencia y máxima frecuencia
- -Oscilador en anillo
- -Circuitos de interfaz

5. CIRCUITOS DIGITALES CMOS

- -Lógica combinacional
- -Dimensionamiento y velocidad de propagación
- -Lógicas dinámicas
- -Circuitos secuenciales
- -Análisis temporal y sincronización
- -Máxima velocidad de operación

6. CIRCUITOS ANALOGICOS

- -Referencias de corriente y tensión
- -Amplificadores operacionales CMOS
- -Técnicas para diseño físico analógico
- -Circuitos no lineales

7. MEMORIAS

- -Arquitecturas de memorias aleatorias
- -Memoria ROM. EPROM, EEPROM y FLASH
- -Celda RAM estática y dinámica

- -Amplificadores de sensado.
- 8. CONVERSORES DE DATOS
 - -Generalidades de conversores de datos.
- -Conversores Digital-Analógico.
- -Conversores Analógico-Digital.
- -Modulador Sigma-Delta.

BIBLIOGRAFÍA

- "Digital Integrated Circuits," J.M. Rabaey, Ed. Prentice-Hall.
- "CMOS Circuit Design, Layout, and Simulation" R.J. Baker, Ed. Wiley.
- "CMOS Analog Circuit Design," P. Allen, D. Holberg, Ed. Oxford.
- "DEEP SUB-MICRON CMOS CIRCUIT DESIGN," Sicard, Bendhia, Ed. Brooks-Cole.
- "Device Electronics for Integrated Circuits", R.S. Muller, T.I. Kamins, Ed. Wiley.

RÉGIMEN DE CURSADA

Metodología de enseñanza

El curso se dicta en 2 clases semanales de 3 horas de duración cada una. Cada semana se realizaran trabajos prácticos individuales de aplicación de los temas tratados, donde se analizan y discuten los circuitos electrónicos que luego son simulados. En ciertos casos el estudiante debe diseñar las máscaras de fabricación. Los trabajos prácticos son obligatorios y el informe tiene fecha de entrega preestablecida.

Modalidad de Evaluación Parcial

La evaluación parcial se realiza durante la octava semana de clases, y consiste en la resolución de problemas relacionados con los trabajos prácticos con vencimiento anterior a la fecha del examen.

CALENDARIO DE CLASES

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<1> 09/03 al 14/03	Características del silicio y del oxido de silicio. Fotolitografía. Difusión e implante de impurezas. Fabricación de transistores bipolares.	Cálculo de tiempos y temperaturas para crecimiento de SiO2. Cálculo de energías y rangos de penetración en implante de iones.				Device Electronics for Integrated Circuits, R.S. Muller, T.I. Kamins, Ed. Wiley.
<2> 16/03 al 21/03	Fabricación de MOSFET. Bandas de energía en el semiconducto r.	FLow-chart fabricacion del MOSFET.				Device Electronics for Integrated Circuits, R.S. Muller, T.I. Kamins, Ed. Wiley.
<3> 23/03 al 28/03	Capacitor MOS. Tensión de inversión. MOSFET. Tensión umbral.	Curvas características del MOSFET. Corte, triodo y saturación. Modelo de pequeña señal.	Modelo de SPICE del MOSFET. Simulación de las curvas características.		14 días después	Device Electronics for Integrated Circuits, R.S. Muller, T.I. Kamins, Ed. Wiley.
<4> 30/03 al 04/04	Reglas de diseño. Programas de diseño. Validación y verificación.	Discusión sobre el proceso CMOS a utilizar durante el curso.	Uso de programa de CAD para el diseño físico de las máscaras.			Manual de SPICE
<5> 06/04 al 11/04	INVERSOR CMOS Tiempo de propagación. Potencia y máxima frecuencia. Oscilador en anillo.	Cálculo del tiempo de propagación Dimensionami ento. El inversor como buffer.	Generación de las máscaras del inversor mediante programa CAD.		14 días después	Digital Integrated Circuits, J.M.Rabaey CMOS Circuit Design, Sicard & Bendhia
<6> 13/04 al 18/04	CIRCUITOS CMOS COMBINACI ONALES. Logica estática. Dimensionami ento y velocidad de propagación. Estimación de la potencia y máxima frecuencia.	Cálculo de tiempos de propagación.	Síntesis de compuertas en lógica combinacional CMOS.			Digital Integrated Circuits, J.M.Rabaey CMOS Circuit Design, Sicard & Bendhia
<7> 20/04 al 25/04	CIRCUITOS CMOS COMBINACI ONALES. Lógica CMOS de llaves. Lógica CMOS dinámica.	Cálculo de tiempos de propagación.	Síntesis de compuertas en lógica de llaves CMOS. Síntesis de compuertas en lógica dinámica CMOS.		14 días después	Digital Integrated Circuits, J.M.Rabaey CMOS Circuit Design, Sicard & Bendhia
<8> 27/04 al 02/05	CIRCUITOS CMOS SECUENCIAL	Tiempos característicos : hold, set-up	Síntesis de Latches y FFs.			Digital Integrated Circuits,

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
	ES. Latch. Flip-Flop.	y clock to Q. Determinación de la máxima frecuencia de operación.				J.M.Rabaey CMOS Circuit Design, Sicard & Bendhia
<9> 04/05 al 09/05	CIRCUITOS ANALOGICO S LINEALES. Referencias de corriente y tensión. Amplificadore s operacionales	Diseño de OPAMPs y referencias de corriente/tensió n.	Técnicas diseño analógico.			CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D. Holberg, Ed. Oxford.
<10> 11/05 al 16/05	CIRCUITOS ANALOGICO S NO LINEALES. Comparadore s. Osciladores. PLLs.	Diseño de comparadores y osciladores.	Técnicas diseño analógico.		14 días después	CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D. Holberg, Ed. Oxford.
<11> 18/05 al 23/05	MEMORIAS. Direccionamie nto. Celda SRAM. Celda DRAM. Amplificador de sensado.	Calculo del tiempo de lectura y escritura.	Diseño proyecto final.			CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D. Holberg, Ed. Oxford.
<12> 25/05 al 30/05	MEMORIAS. EPROM. E2PROM. FLASH.	Calculo del tiempo de lectura y escritura. Cálculo del tiempo de borrado.	Diseño proyecto final.			CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D. Holberg, Ed. Oxford.
<13> 01/06 al 06/06	CONVERSO RES DIGITAL- ANALOGICO. Divisor resistivo. Array resistivo. R-2R. Divisor capacitivo.	Discusión sobre resolución, linealidad, offset, ganancia, ruido y velocidad de operación.	Diseño proyecto final.		14 días después	CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D.

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
	Array de fuentes de corriente.					Holberg, Ed. Oxford.
<14> 08/06 al 13/06	CONVERSO RES ANALOGICO- DIGITAL. Flash. SAR. Pipeline.	Discusión sobre resolución, linealidad, offset, ganancia, ruido y velocidad de operación.	Diseño proyecto final.			CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D. Holberg, Ed. Oxford.
<15> 15/06 al 20/06	CONVERSO RES DE SOBREMUES TREO. Circuitos con capacitores conmutados. Integrador con capacitores conmutados. Modulación Sigma-Delta. Conversor SD de primer y segundo orden.	Discusión sobre diseño de circuitos con capacitores conmutados.	Diseño proyecto final.			CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D. Holberg, Ed. Oxford.
<16> 22/06 al 27/06	Clase de temas especiales (sensores CMOS) / Recuperación / Consultas.	Clase de Consulta.	Diseño proyecto final.			CMOS Circuit Design, Layout, and Simulation, R.J. Baker, Ed. Wiley. CMOS Analog Circuit Design, P. Allen, D. Holberg, Ed. Oxford.

CALENDARIO DE EVALUACIONES

Evaluación Parcial

Oportunidad	Semana	Fecha	Hora	Aula		
10	8					
20	10					
3º	12					
4º						
Otras observaciones						