

Planificaciones

6657 - Optoelectrónica

Docente responsable: GONZALEZ MARTIN GERMAN

OBJETIVOS

Proporcionar un conocimiento introductorio a la optoelectrónica de forma que el estudiante pueda comprender y hacer uso de los últimos desarrollos en la especialidad; aprovechando los resultados obtenidos en los laboratorios de investigación y el instrumental disponible en esta facultad.

CONTENIDOS MÍNIMOS

-

PROGRAMA SINTÉTICO

- 1. Óptica. Revisión leyes fundamentales de la óptica geométrica y ondulatoria. Repaso Electromagnetismo. Sistemas ópticos paraxiales.
- 2. Láser. Haz gaussiano. Modos transversales y longitudinales. Amplificador y oscilador óptico. Tipos de láser.
- 3. Fibras ópticas. Propagación, características constructivas y aplicaciones.
- 4. Detectores de radiación. Fotodiodo. Fotomultiplicador. Optoacopladores. Cámaras basadas en tecnologías CCD y CMOS. Detectores piroeléctricos y bolométricos.
- 5. Aplicaciones en la industria y en el cuidado del medio ambiente

PROGRAMA ANALÍTICO

ÓPTICA

Revisión de las leyes fundamentales de óptica geométrica y ondulatoria (ley de Snell, ecuaciones de Fresnel, ángulo de Brewster, etc.). Trazado de rayos en sistemas ópticos paraxiales. Lentes, espejos y prismas. Métodos matriciales aplicados a sistemas ópticos. Polarización. Espejos multicapa. Coherencia temporal y espacial. Cavidades ópticas. Diagrama de estabilidad. Cavidades estables e inestables.

LÁSERES

Resonadores láser. Analogía con circuitos electrónicos. Haces gaussianos. Modos Transversales. Descripción física del modo TEM00: términos de amplitud y fase longitudinal y radial. Haces gaussianos en resonadores estables simples. Resonancia, agudeza de la resonancia. Pérdidas por difracción. Radiación atómica: transiciones estimuladas, mecanismos de ensanchamiento de línea homogéneos e inhomogéneos, coeficientes de Einstein, ecuaciones de transición para un sistema de dos niveles, conceptos de ganancia e inversión de población. Amplificación y oscilación láser: condición umbral, saturación, eficiencia cuántica, potencia de salida, acoplamiento óptimo. Dinámica del láser. Ejemplos de láseres. Láseres de tres y cuatro niveles. Diferentes tipos de bombeo. Láseres de estado sólido (rubí, neodimio, titanio, etc.). Láseres de estado líquido (colorantes). Láseres de estado gaseoso (He-Ne, Ar, CO2, etc.). Láseres semiconductores: teoría, propiedades ópticas, absorción óptica y ganancia. Diodo láser. Sistema homojuntura y heterojuntura.

FIBRAS ÓPTICAS

Propagación en fibras ópticas. Características constructivas. Fibras multimodo y monomodo. Fibras de índice de refracción abrupto y de índice gradual. Absorción, atenuación y dispersión en fibras. Compensación y selección de la longitud de onda de propagación. Láseres de fibra óptica.

DETECTORES DE RADIACIÓN

Detectores térmicos: termopilas, bolómetros y piroeléctricos. Detectores fotoconductivas y fotovoltaicos. Detectores de avalancha. Detectores de cuadrante y de posición. Fotomultiplicadores. Parámetros que caracterizan a los detectores de radiación: detectividad, responsividad, respuesta espectral y respuesta en frecuencia. Principio de funcionamiento. Características constructivas. Detectores comerciales. Ejemplos de utilización.

APLICACIONES

Comunicaciones. Metrología y alineación. Sensado remoto. Técnicas Espectroscópicas de medición. Procesamiento de materiales mediante láser. Interferometría.

BIBLIOGRAFÍA

La bibliografía básica del curso está dada por:

- J. T. Verdeyen: "Laser Electronics", Prentice Hall, New Jersey, USA, 1994.
- G. Ghione: "Semiconductor Devices for High-Speed Optoelectronics", Cambridge University Press, New York, USA, 2009.
- S. Prasad, H. Schumacher, A. Gopinath: "High-Speed Electronics and Optoelectronics: Devices and Circuits", Cambridge University Press, New York, USA, 2009.
- C. Pollock: "Fundamentals of Optoelectronics", Richard Irwin, California, USA, 1994.
- R. Lasky, U. Osterberg, D. Stigliani: "Optoelectronics for Data Communication, Academic Press, New Jersey,

USA, 1995.

Otra bibliografía de referencia es:

Shun Lien Chuang: "Physics of Optoelectronics Devices", John Wiley & Sons Inc., New York, USA, 1995.

E. Siegman: "Lasers", University Science Books, California, USA, 1986.

O. Svelto: "Principles of Lasers 5th edition", Springer Science, New York, USA, 2010.

W. Koechner: "Solid State Lasers Engineering", Springer Science, New York, USA, 2006.

RÉGIMEN DE CURSADA

Metodología de enseñanza

Clases teórico-prácticas, conformadas por explicaciones conceptuales con participación de los alumnos, resolución de ejercicios, y prácticas de laboratorio. Desarrollo de un proyecto final donde deben aplicar lo aprendido en un trabajo concreto. La elección del proyecto a desarrollar es libre y solo interviene el docente como guía a solicitud de los alumnos. Se discute la factibilidad del desarrollo teniendo en cuenta los tiempos necesarios para el desarrollo y el instrumental disponible en la Facultad.

Modalidad de Evaluación Parcial

Para aprobar la materia el/la alumno/a deberá:

- * tener aprobados todos los informes de las prácticas de laboratorio.
- * completar el proyecto final y tener su informe aprobado.

CALENDARIO DE CLASES

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<1> 09/03 al 14/03	Martes: Introducción Jueves: Cavidades Ópticas					
<2> 16/03 al 21/03	Martes: Modos EM transversales	Problemas de aplicación métodos matriciales	Jueves: TP1 Polarizadores.			C. Pollock: "Fundamentals of Optoelectroni cs"
<3> 23/03 al 28/03	Martes: Modos EM longitudinales Jueves: Amplificación Óptica	Problemas de cavidades ópticas				
<4> 30/03 al 04/04	Jueves: Dinámica del Láser (I)		Martes: TP2 Haz Láser		Martes: Entrega TP1	J. T. Verdeyen: "Laser Electronics"
<5> 06/04 al 11/04	Martes: Dinámica del Láser (II) Jueves: Sistema de bombeo	Problemas características del láser				
<6> 13/04 al 18/04	Jueves: Láser Semiconducto r (I)		Martes: TP3 Dinámica del Láser		Martes: Entrega TP2	
<7> 20/04 al 25/04	Martes: Láser Semiconducto r (II) Jueves: Introducción a la Fibra Óptica					
<8> 27/04 al 02/05	Martes: Fibras ópticas.	Problemas de Fibras Ópticas	Jueves: TP4 Fibras Ópticas		Martes: Entrega TP3	Shun Lien Chuang: "Physics of Optoelectroni cs Devices"
<9> 04/05 al 09/05	Martes y Jueves: Fotodetectore s.	Problemas detectores.				R. Lasky, U. Osterberg, D. Stigliani: "Optoelectroni cs for Data Communicatio n"
<10> 11/05 al 16/05	Jueves: Aplicaciones industriales y en el medio ambiente		Martes: TP5 Fotodetectores		Martes: Entrega TP4	
<11> 18/05 al 23/05	Martes: Aplicaciones industriales y en el medio ambiente Jueves: Introducción al proyecto final de la materia					
<12> 25/05 al 30/05	Elección tema proyecto Final				Martes: Entrega TP5	
<13>	Proyecto Final					

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
01/06 al 06/06						
<14> 08/06 al 13/06	Proyecto Final					
<15> 15/06 al 20/06	Proyecto Final					
<16> 22/06 al 27/06	Proyecto Final					

CALENDARIO DE EVALUACIONES

Evaluación Parcial

Oportunidad	Semana	Fecha	Hora	Aula			
1º							
20							
3º							
40							
Observaciones sobre el Temario de la Evaluación Parcial							
Aprobación de los informes de las prácticas de laborarotorio y el preinforme del trabajo final							